脸上白了一小块是什么原因| 场合是什么意思| 2000年属什么的| 四个月读什么| 凉拖鞋什么材质的好| 鸟屎掉手上有什么预兆| 维生素b12又叫什么| 晚上睡不着白天睡不醒是什么原因| 疡是什么意思| 什么原因导致荨麻疹| 张五行属性是什么| 三月份是什么星座的| 一物降一物指什么生肖| 幽门螺杆菌是什么引起的| 什么样的荷叶| marni是什么牌子| 10月份是什么星座的| 等闲识得东风面下一句是什么| 什么掌不能拍| 上环后需要注意什么| 世事无常什么意思| 池塘里有什么| 心率低于60说明什么| 518是什么星座| 卯木代表什么| 为什么手会麻| 空调漏水是什么原因| 容字五行属什么| 拿什么证明分居两年| 老年人反复发烧是什么原因引起的| polo是什么意思| 大连机场叫什么| 睡眠浅是什么原因| 溃疡吃什么水果| 22年属什么生肖| 新生儿白细胞高是什么原因| 820是什么意思| 蔬菜都有什么| npc是什么意思| 壁虎为什么是五毒之一| 宝宝乳糖不耐受喝什么奶粉比较好| 猴子是什么动物| 制动是什么意思| 气血不足吃什么中成药最好| 烤冷面的面皮是什么面| 精神焦虑症有什么表现有哪些| nc是什么意思| 未分类结晶偏高是什么意思| 灰指甲是什么| 猫离家出走预示着什么| 对付是什么意思| 为什么肚子总是胀胀的| 总蛋白偏低是什么原因| 藏红花适合什么样的人喝| 为什么会有癌症| 去海边穿什么衣服拍照好看| 大枕大池有什么危害| 脚踩棉花感见于什么病| 泪沟是什么| 付之东流是什么意思| 嘴里起血泡是什么原因| 黑豆腐是什么做的| 背动态心电图要注意什么| 6月什么星座| 6.1什么星座| 强身之道的强是什么意思| 嘴巴里发苦是什么原因| 心脏病有什么症状表现| 123是什么意思| rr过低是什么意思| 手指伸不直是什么原因| 小鸟站在高压线上为什么不会触电| 大是大非是什么意思| 隐翅虫是什么| 心电图异常q波什么意思| 爱因斯坦发明了什么| 火影忍者什么时候出的| 擦枪走火什么意思| 离职什么意思| 总打嗝吃什么药| 567是什么意思| 第三代身份证什么时候开始办理| 随遇而安是什么生肖| 头孢什么样子图片| 柱镜是什么| 拉肚子喝什么饮料| 精神心理科主要治疗什么疾病| 阴唇为什么一大一小| 余事勿取是什么意思| 座驾是什么意思| 减肥吃什么水果好| 什么是官方旗舰店| 内分泌失调吃什么药| 什么是手淫| 心脾两虚吃什么食物补最快| 多吃海带有什么好处和坏处| 体检挂什么科室| apl是什么意思| 嘻哈是什么意思| 均码是什么码| 外强中干什么意思| 小分子水是什么水| 看望病人买什么水果| 打闭经针有什么副作用| 三花鱼是什么鱼| 什么东西| 奶咖色是什么颜色| 柯是什么意思| 白带异味是什么原因| 舅舅和外甥女是什么关系| 便秘吃什么可以调理| 什么补钾最快| 吃豌豆有什么好处| 孩子感冒发烧吃什么药| 肝癌有什么症状| 魇是什么意思| b站的硬币有什么用| 六月初八是什么日子| 酒糟鼻子是什么原因引起的| 神经外科和神经内科有什么区别| 骨折恢复吃什么好| 上火流鼻血是什么原因| 退翳什么意思| 尖锐湿疣用什么药| 阴差阳错是什么意思| 每天半夜两三点醒是什么原因| 什么叫柏拉图式的爱情| 胸口有痣代表什么意思| 梦见和老公吵架是什么意思| 地龙是什么东西| 睡美人叫什么名字| 阑珊处是什么意思| 12月21日是什么星座| 色盲色弱是什么意思| 梦见别人给钱是什么意思| 幽门螺旋杆菌什么意思| 什么东西越剪越大| 藏红花和什么一起泡水喝效果好| 站着说话不腰疼是什么意思| 男性腰疼挂什么科| 加盟资质需要什么条件| 水瓶男和什么座最配| 黄金五行属什么| 喉咙有白痰是什么原因| 气球是什么意思| 检查肝做什么检查| 情商高是什么意思| 山楂什么季节成熟| 为什么叫夺命大乌苏| 大运正官是什么意思| 口腔溃疡吃什么好的快| sandals是什么意思| 鼻腔干燥是什么原因| 牙龈疼吃什么消炎药| 黄金发红是什么原因| 梦到自己怀孕了是什么预兆| 番茄不能和什么一起吃| 热伤风感冒吃什么药好| 什么样的月光| 甘甜的什么| 正团级是什么军衔| 不可翻转干燥是什么意思| 心率低吃什么药好| 术后吃什么补元气| 狮子座和什么星座最配| 每个月月经都提前是什么原因| 早泄是什么症状| 为什么身上有红色的痣| 什么血型的人招蚊子| 梦见老婆出轨是什么预兆| 尿液浑浊是什么原因| 孕晚期吃什么水果好| 医院属于什么行业| 耘字五行属什么| 海底捞是什么| 培土什么意思| crocs是什么牌子的鞋| 亮晶晶的什么填空| 渗透压偏高是什么原因| 脸上长斑是因为什么原因引起的| 大姨妈是什么| pio是什么意思| 哈库呐玛塔塔什么意思| 孕妇感冒了对胎儿有什么影响| 什么书什么画| 手淫过度吃什么药调理| 尿急吃什么药效果最好| 为什么今年闰六月| 38岁属什么的生肖| 失眠去药店买什么药| 朱门是什么意思| 胃反流是什么原因引起的| 脚起皮干裂是什么原因| 腿有淤青是什么原因| 弥月之喜是什么意思| 什么是抗生素类药物| 吃葡萄对身体有什么好处| 神仙是什么意思| 嘴唇淡紫色是什么原因| 乙肝表面抗体弱阳性什么意思| 后背痒痒是什么原因| 喝什么| 贼是什么意思| 颠勺是什么意思| pep是什么意思| 嗣后是什么意思| 壬寅年五行属什么| 晚上9点半是什么时辰| 两肺纹理增多模糊是什么意思| 不知为什么| 淳字五行属什么| 鼠标dpi是什么| 盐冻虾是什么意思| 中午一点半是什么时辰| 经期吃什么水果| 吕布的坐骑是什么| aldo是什么牌子| 7月12是什么星座| 床上放什么可以驱虫| 明胶是什么| 缺硒有什么症状| 热玛吉是什么意思| 医院特需号是什么意思| 细水长流是什么意思| 尿分叉是什么原因| 脑利钠肽前体值高预示什么| 空亡什么意思| 烤鱼用什么鱼| 什么是阴阳| 动脉抽血是做什么检查| 快递什么时候停运| 4月25号是什么星座| 腹水是什么症状| 搁浅了是什么意思| 侯赛因是什么意思| durex什么意思| 多梦是什么原因造成的| 早些泄挂什么科| 想什么来什么是什么定律| 身份证复印件是什么| 大地色眼影是什么颜色| 高血压高血脂不能吃什么| as是什么| 立秋抓秋膘吃什么| 备孕怀男孩做什么准备| 体脂是什么| 做胃镜之前需要做什么准备| 九七年属什么生肖| 小肚子鼓鼓的什么原因| 什么是二级医院| 波司登是什么档次| 什么是物理| 孙悟空姓什么| 抗风疹病毒抗体igg高是什么意思| 进去是什么感觉| 音调是什么| 子宫动脉阻力高是什么引起的| 暖手宝里面是什么| 疽是什么意思| 虚恋是什么意思| 化疗后白细胞低吃什么食物补得快| 大林木是什么生肖| 酒干倘卖无是什么意思| 一年半载是什么意思| 百度Jump to content

欧盟发表联合声明 寻求美国钢铝关税“永久豁免”

From Wikiversity
百度 正在蓄势跑出创新加速度、谋求高质量发展的湖南,应如何深化供给侧结构性改革?湖南日报特约专家学者建言献策。

This page belongs to resource collections on Logic and Inquiry.

Inquiry is any proceeding or process that has the aim of augmenting knowledge, resolving doubt, or solving a problem. A theory of inquiry is an account of the various types of inquiry and a treatment of the ways that each type of inquiry achieves its aim.

Classical sources

[edit | edit source]

Deduction

[edit | edit source]

When three terms are so related to one another that the last is wholly contained in the middle and the middle is wholly contained in or excluded from the first, the extremes must admit of perfect syllogism. By 'middle term' I mean that which both is contained in another and contains another in itself, and which is the middle by its position also; and by 'extremes' (a) that which is contained in another, and (b) that in which another is contained. For if A is predicated of all B, and B of all C, A must necessarily be predicated of all C. … I call this kind of figure the First. (Aristotle, Prior Analytics, 1.4).

Induction

[edit | edit source]

Induction, or inductive reasoning, consists in establishing a relation between one extreme term and the middle term by means of the other extreme; for example, if B is the middle term of A and C, in proving by means of C that A applies to B; for this is how we effect inductions. (Aristotle, Prior Analytics, 2.23).

Abduction

[edit | edit source]

The locus classicus for the study of abductive reasoning is found in Aristotle's Prior Analytics, Book 2, Chapt. 25. It begins this way:

We have Reduction (απαγωγη, abduction):

  1. When it is obvious that the first term applies to the middle, but that the middle applies to the last term is not obvious, yet is nevertheless more probable or not less probable than the conclusion;

  2. Or if there are not many intermediate terms between the last and the middle;

For in all such cases the effect is to bring us nearer to knowledge.

By way of explanation, Aristotle supplies two very instructive examples, one for each of the two varieties of abductive inference steps that he has just described in the abstract:

  1. For example, let A stand for "that which can be taught", B for "knowledge", and C for "morality". Then that knowledge can be taught is evident; but whether virtue is knowledge is not clear. Then if BC is not less probable or is more probable than AC, we have reduction; for we are nearer to knowledge for having introduced an additional term, whereas before we had no knowledge that AC is true.

  2. Or again we have reduction if there are not many intermediate terms between B and C; for in this case too we are brought nearer to knowledge. For example, suppose that D is "to square", E "rectilinear figure", and F "circle". Assuming that between E and F there is only one intermediate term — that the circle becomes equal to a rectilinear figure by means of lunules — we should approximate to knowledge.

(Aristotle, Prior Analytics 2.25, with minor alterations)

Aristotle's latter variety of abductive reasoning, though it will take some explaining in the sequel, is well worth our contemplation, since it hints already at streams of inquiry that course well beyond the syllogistic source from which they spring, and into regions that Peirce will explore more broadly and deeply.

Inquiry in the pragmatic paradigm

[edit | edit source]

In the pragmatic philosophies of Charles Sanders Peirce, William James, John Dewey, and others, inquiry is closely associated with the normative science of logic. In its inception, the pragmatic model or theory of inquiry was extracted by Peirce from its raw materials in classical logic, with a little bit of help from Kant, and refined in parallel with the early development of symbolic logic by Boole, De Morgan, and Peirce himself to address problems about the nature and conduct of scientific reasoning. Borrowing a brace of concepts from Aristotle, Peirce examined three fundamental modes of reasoning that play a role in inquiry, commonly known as abductive, deductive, and inductive inference.

In rough terms, abduction is what we use to generate a likely hypothesis or an initial diagnosis in response to a phenomenon of interest or a problem of concern, while deduction is used to clarify, to derive, and to explicate the relevant consequences of the selected hypothesis, and induction is used to test the sum of the predictions against the sum of the data. It needs to be observed that the classical and pragmatic treatments of the types of reasoning, dividing the generic territory of inference as they do into three special parts, arrive at a different characterization of the environs of reason than do those accounts that count only two.

These three processes typically operate in a cyclic fashion, systematically operating to reduce the uncertainties and the difficulties that initiated the inquiry in question, and in this way, to the extent that inquiry is successful, leading to an increase in knowledge or in skills.

In the pragmatic way of thinking everything has a purpose, and the purpose of each thing is the first thing we should try to note about it. The purpose of inquiry is to reduce doubt and lead to a state of belief, which a person in that state will usually call knowledge or certainty. As they contribute to the end of inquiry, we should appreciate that the three kinds of inference describe a cycle that can be understood only as a whole, and none of the three makes complete sense in isolation from the others. For instance, the purpose of abduction is to generate guesses of a kind that deduction can explicate and that induction can evaluate. This places a mild but meaningful constraint on the production of hypotheses, since it is not just any wild guess at explanation that submits itself to reason and bows out when defeated in a match with reality. In a similar fashion, each of the other types of inference realizes its purpose only in accord with its proper role in the whole cycle of inquiry. No matter how much it may be necessary to study these processes in abstraction from each other, the integrity of inquiry places strong limitations on the effective modularity of its principal components.

Art and science of inquiry

[edit | edit source]

For our present purposes, the first feature to note in distinguishing the three principal modes of reasoning from each other is whether each of them is exact or approximate in character. In this light, deduction is the only one of the three types of reasoning that can be made exact, in essence, always deriving true conclusions from true premisses, while abduction and induction are unavoidably approximate in their modes of operation, involving elements of fallible judgment in practice and inescapable error in their application.

The reason for this is that deduction, in the ideal limit, can be rendered a purely internal process of the reasoning agent, while the other two modes of reasoning essentially demand a constant interaction with the outside world, a source of phenomena and problems that will no doubt continue to exceed the capacities of any finite resource, human or machine, to master. Situated in this larger reality, approximations can be judged appropriate only in relation to their context of use and can be judged fitting only with regard to a purpose in view.

A parallel distinction that is often made in this connection is to call deduction a demonstrative form of inference, while abduction and induction are classed as non-demonstrative forms of reasoning. Strictly speaking, the latter two modes of reasoning are not properly called inferences at all. They are more like controlled associations of words or ideas that just happen to be successful often enough to be preserved as useful heuristic strategies in the repertoire of the agent. But non-demonstrative ways of thinking are inherently subject to error, and must be constantly checked out and corrected as needed in practice.

In classical terminology, forms of judgment that require attention to the context and the purpose of the judgment are said to involve an element of 'art', in a sense that is judged to distinguish them from 'science', and in their renderings as expressive judgments to implicate arbiters in styles of rhetoric, as contrasted with logic.

In a figurative sense, this means that only deductive logic can be reduced to an exact theoretical science, while the practice of any empirical science will always remain to some degree an art.

Zeroth order inquiry

[edit | edit source]

Many aspects of inquiry can be recognized and usefully studied in very basic logical settings, even simpler than the level of syllogism, for example, in the realm of reasoning that is variously known as boolean algebra, propositional calculus, sentential calculus, or zeroth-order logic. By way of approaching the learning curve on the gentlest availing slope, we may well begin at the level of zeroth-order inquiry, in effect, taking the syllogistic approach to inquiry only so far as the propositional or sentential aspects of the associated reasoning processes are concerned. One of the bonuses of doing this in the context of Peirce's logical work is that it provides us with doubly instructive exercises in the use of his logical graphs, taken at the level of his so-called 'alpha graphs'.

In the case of propositional calculus or sentential logic, deduction comes down to applications of the transitive law for conditional implications and the approximate forms of inference hang on the properties that derive from these. In describing the various types of inference I will employ a few old terms of art from classical logic that are still of use in treating these kinds of simple problems in reasoning.

Deduction takes a Case, the minor premiss
and combines it with a Rule,the major premiss
to arrive at a Fact, the demonstrative conclusion
Induction takes a Case of the form
and matches it with a Fact of the form
to infer a Rule of the form
Abduction takes a Fact of the form
and matches it with a Rule of the form
to infer a Case of the form

For ease of reference, Figure 1 and the Legend beneath it summarize the classical terminology for the three types of inference and the relationships among them.

o-------------------------------------------------o
|                                                 |
|                   Z                             |
|                   o                             |
|                   |\                            |
|                   | \                           |
|                   |  \                          |
|                   |   \                         |
|                   |    \                        |
|                   |     \   R U L E             |
|                   |      \                      |
|                   |       \                     |
|               F   |        \                    |
|                   |         \                   |
|               A   |          \                  |
|                   |           o Y               |
|               C   |          /                  |
|                   |         /                   |
|               T   |        /                    |
|                   |       /                     |
|                   |      /                      |
|                   |     /   C A S E             |
|                   |    /                        |
|                   |   /                         |
|                   |  /                          |
|                   | /                           |
|                   |/                            |
|                   o                             |
|                   X                             |
|                                                 |
| Deduction takes a Case of the form X => Y,      |
| matches it with a Rule of the form Y => Z,      |
| then adverts to a Fact of the form X => Z.      |
|                                                 |
| Induction takes a Case of the form X => Y,      |
| matches it with a Fact of the form X => Z,      |
| then adverts to a Rule of the form Y => Z.      |
|                                                 |
| Abduction takes a Fact of the form X => Z,      |
| matches it with a Rule of the form Y => Z,      |
| then adverts to a Case of the form X => Y.      |
|                                                 |
| Even more succinctly:                           |
|                                                 |
|           Abduction  Deduction  Induction       |
|                                                 |
| Premiss:     Fact       Rule       Case         |
| Premiss:     Rule       Case       Fact         |
| Outcome:     Case       Fact       Rule         |
|                                                 |
o-------------------------------------------------o
Figure 1.  Elementary Structure and Terminology

In its original usage a statement of Fact has to do with a deed done or a record made, that is, a type of event that is openly observable and not riddled with speculation as to its very occurrence. In contrast, a statement of Case may refer to a hidden or a hypothetical cause, that is, a type of event that is not immediately observable to all concerned. Obviously, the distinction is a rough one and the question of which mode applies can depend on the points of view that different observers adopt over time. Finally, a statement of a Rule is called that because it states a regularity or a regulation that governs a whole class of situations, and not because of its syntactic form. So far in this discussion, all three types of constraint are expressed in the form of conditional propositions, but this is not a fixed requirement. In practice, these modes of statement are distinguished by the roles that they play within an argument, not by their style of expression. When the time comes to branch out from the syllogistic framework, we will find that propositional constraints can be discovered and represented in arbitrary syntactic forms.

Kinds of inference

[edit | edit source]

The three kinds of inference that Peirce would come to refer to as abductive, deductive, and inductive inference he gives his earliest systematic treatment in two series of lectures on the logic of science: the Harvard University Lectures of 1865 and the Lowell Institute Lectures of 1866. There he sums up the characters of the three kinds of reasoning in the following terms:

We have then three different kinds of inference:

   Deduction or inference à priori,

   Induction or inference à particularis, and

   Hypothesis or inference à posteriori.

(Peirce, "On the Logic of Science" (1865), CE 1, 267).

Early in the first series of lectures Peirce gives a very revealing illustration of how he then thinks of the natures, operations, and relationships of this trio of inference types:

If I reason that certain conduct is wise
because it has a character which belongs
only to wise things, I reason à priori.

If I think it is wise because it once turned out
to be wise, that is, if I infer that it is wise on
this occasion because it was wise on that occasion,
I reason inductively [à particularis].

But if I think it is wise because a wise man does it,
I then make the pure hypothesis that he does it
because he is wise, and I reason à posteriori.

(Peirce, "On the Logic of Science" (1865), CE 1, 180).

We may begin the analysis of Peirce's example by making the following assignments of letters to the qualitative attributes mentioned in it:

  • A = 'Wisdom',
  • B = 'a certain character',
  • C = 'a certain conduct',
  • D = 'done by a wise man',
  • E = 'a certain occasion'.

Recognizing that a little more concreteness will serve as an aid to the understanding, let's augment the Spartan features of Peirce's illustration in the following way:

  • B = 'Benevolence', a certain character,
  • C = 'Contributes to Charity', a certain conduct,
  • E = 'Earlier today', a certain occasion.

The converging operation of all three reasonings is shown in Figure 2.

o---------------------------------------------------------------------o
|                                                                     |
|  D ("done by a wise man")                                           |
|   o                                                                 |
|    \*                                                               |
|     \ *                                                             |
|      \  *                                                           |
|       \   *                                                         |
|        \    *                                                       |
|         \     *                                                     |
|          \      * A ("a wise act")                                  |
|           \       o                                                 |
|            \     /| *                                               |
|             \   / |   *                                             |
|              \ /  |     *                                           |
|               .   |       o B ("benevolence", a certain character)  |
|              / \  |     *                                           |
|             /   \ |   *                                             |
|            /     \| *                                               |
|           /       o                                                 |
|          /      * C ("contributes to charity", a certain conduct)   |
|         /     *                                                     |
|        /    *                                                       |
|       /   *                                                         |
|      /  *                                                           |
|     / *                                                             |
|    /*                                                               |
|   o                                                                 |
|  E ("earlier today", a certain occasion)                            |
|                                                                     |
o---------------------------------------------------------------------o
Figure 2.  A Thrice Wise Act

One of the styles of syntax that Aristotle uses for syllogistic propositions suggests the composite symbols that geometers have long used for labeling line intervals in a geometric figure, and it comports quite nicely with the Figure that we have just drawn. Specifically, the proposition that predicates X of the subject Y is represented by the digram 'XY' and associated with the line interval XY that descends from the point X to the point Y in the corresponding lattice diagram. In this wise we make the following observations:

The common proposition that concludes each argument is AC. Introducing the symbol "⇒" to denote the relation of logical implication, the proposition AC can be written as C ⇒ A, and read as "C implies A". Adopting the parenthetical form of Peirce's alpha graphs, in their existential interpretation, AC can be written as (C (A)), and most easily comprehended as "not C without A". In the context of the present example, all of these forms are equally good ways of expressing the same concrete proposition, namely, "contributing to charity is wise".

  • Deduction could have obtained the Fact AC from the Rule AB, "benevolence is wisdom", along with the Case BC, "contributing to charity is benevolent".
  • Induction could have gathered the Rule AC, after a manner of saying that "contributing to charity is exemplary of wisdom", from the Fact AE, "the act of earlier today is wise", along with the Case CE, "the act of earlier today was an instance of contributing to charity".
  • Abduction could have guessed the Case AC, in a style of expression stating that "contributing to charity is explained by wisdom", from the Fact DC, "contributing to charity is done by this wise man", and the Rule DA, "everything that is wise is done by this wise man". Thus, a wise man, who happens to do all of the wise things that there are to do, may nevertheless contribute to charity for no good reason, and even be known to be charitable to a fault. But all of this notwithstanding, on seeing the wise man contribute to charity we may find it natural to conjecture, in effect, to consider it as a possibility worth examining further, that charity is indeed a mark of his wisdom, and not just the accidental trait or the immaterial peculiarity of his character — in essence, that wisdom is the cause of his contribution or the reason for his charity.

As a general rule, and despite many obvious exceptions, an English word that ends in -ion denotes equivocally either a process or its result. In our present application, this means that each of the words abduction, deduction, induction can be used to denote either the process of inference or the product of that inference, that is, the proposition to which the inference in question leads.

One of the morals of Peirce's illustration can now be drawn. It demonstrates in a very graphic fashion that the three kinds of inference are three kinds of process and not three kinds of proposition, not if one takes the word kind in its literal sense as denoting a genus of being, essence, or substance. Said another way, it means that being an abductive Case, a deductive Fact, or an inductive Rule is a category of relation, indeed, one that involves at the very least a triadic relation among propositions, and not a category of essence or substance, that is, not a property that inheres in the proposition alone.

This category distinction between the absolute, essential, or monadic predicates and the more properly relative predicates constitutes a very important theme in Peirce's architectonic. There is of course a parallel application of it in the theory of sign relations, or semiotics, where the distinctions among the sign relational roles of Object, Sign, and Interpretant are distinct ways of relating to other things, modes of relation that may vary from moment to moment in the extended trajectory of a sign process, and not distinctions that mark some fixed and eternal essence of the thing in itself.

In the normal course of inquiry, the elementary types of inference proceed in the order: Abduction, Deduction, Induction. However, the same building blocks can be assembled in other ways to yield different types of complex inferences. Of particular importance, reasoning by analogy can be analyzed as a combination of induction and deduction, in other words, as the abstraction and the application of a rule. Because a complicated pattern of analogical inference will be used in our example of a complete inquiry, it will help to prepare the ground if we first stop to consider an example of analogy in its simplest form.

Abduction

[edit | edit source]
Main article : Abductive reasoning

Much of Peirce's work deals with the scientific and logical questions of knowledge and truth, questions grounded in his experience as a working logician and experimental scientist, one who was a member of the international community of scientists and thinkers of his day. He made important contributions to deductive logic (see below), but was primarily interested in the logic of science and specifically in what he called abduction or "hypothesis", as opposed to deduction and induction. Abduction is the process whereby a hypothesis is generated, so that surprising facts may be explained. "There is a more familiar name for it than abduction", Peirce wrote, "for it is neither more nor less than guessing". Indeed, Peirce considered abduction to be at the heart not only of scientific research but of native human intelligence as well.

In his "Illustrations of the Logic of Science" (CE 3, 325-326), Peirce gives the following example of how abduction nests with deductive and inductive reasoning. Peirce begins by positing the following three statements:

  • Rule: "All the beans from this bag are white."
  • Case: "These beans are from this bag."
  • Result: "These beans are white."

Now let any two of these statements be Givens (their order not mattering), and let the remaining statement be the Conclusion. The result is an argument, of which three kinds are possible:

  Deduction Induction Abduction
Premiss Rule Case Rule
Premiss Case Fact Fact
Conclusion Fact Rule Case

Deduction

[edit | edit source]
Main article : Deductive reasoning

Induction

[edit | edit source]
Main article : Inductive reasoning

Analogy

[edit | edit source]

The classic description of analogy in the syllogistic frame comes from Aristotle, who called this form of inference by the name paradeigma, that is, reasoning by way of example or through the parallel comparison of cases.

We have an Example [παραδειγμα, analogy] when the major extreme is shown to be applicable to the middle term by means of a term similar to the third. It must be known both that the middle applies to the third term and that the first applies to the term similar to the third. (Aristotle, "Prior Analytics", 2.24).

Aristotle illustrates this pattern of argument with the following sample of reasoning. The setting is a discussion, taking place in Athens, on the issue of going to war with Thebes. It is apparently accepted that a war between Thebes and Phocis is or was a bad thing, perhaps from the objectivity lent by non-involvement or perhaps as a lesson of history.

For example, let A be 'bad', B 'to make war on neighbors', C 'Athens against Thebes', and D 'Thebes against Phocis'. Then if we require to prove that war against Thebes is bad, we must be satisfied that war against neighbors is bad. Evidence of this can be drawn from similar examples, for example, that war by Thebes against Phocis is bad. Then since war against neighbors is bad, and war against Thebes is war against neighbors, it is evident that war against Thebes is bad. (Aristotle, "Prior Analytics", 2.24, with minor alterations).

Aristotle's sample of argument from analogy may be analyzed in the following way:

First, a Rule is induced from the consideration of a similar Case and a relevant Fact:

  • Case: D ⇒ B, Thebes vs Phocis is war against neighbors.
  • Fact: D ⇒ A, Thebes vs Phocis is bad.
  • Rule: B ⇒ A, War against neighbors is bad.

Next, the Fact to be proved is deduced from the application of the previously induced Rule to the present Case:

  • Case: C ⇒ B, Athens vs Thebes is war against neighbors.
  • Rule: B ⇒ A, War against neighbors is bad.
  • Fact: C ⇒ A, Athens vs Thebes is bad.

In practice, of course, it would probably take a mass of comparable cases to establish a rule. As far as the logical structure goes, however, this quantitative confirmation only amounts to 'gilding the lily'. Perfectly valid rules can be guessed on the first try, abstracted from a single experience or adopted vicariously with no personal experience. Numerical factors only modify the degree of confidence and the strength of habit that govern the application of previously learned rules.

Figure 3 gives a graphical illustration of Aristotle's example of 'Example', that is, the form of reasoning that proceeds by Analogy or according to a Paradigm.

o-----------------------------------------------------------o
|                                                           |
|                             A                             |
|                             o                             |
|                            /*\                            |
|                           / * \                           |
|                          /  *  \                          |
|                         /   *   \                         |
|                        /    *    \                        |
|                       /     *     \                       |
|                      /   R u l e   \                      |
|                     /       *       \                     |
|                    /        *        \                    |
|                   /         *         \                   |
|                  /          *          \                  |
|              F a c t        o        F a c t              |
|                /          * B *          \                |
|               /         *       *         \               |
|              /        *           *        \              |
|             /       *               *       \             |
|            /   C a s e            C a s e    \            |
|           /     *                       *     \           |
|          /    *                           *    \          |
|         /   *                               *   \         |
|        /  *                                   *  \        |
|       / *                                       * \       |
|      o                                             o      |
|     C                                               D     |
|                                                           |
| A  =  Atrocious, Adverse to All, A bad thing              |
| B  =  Belligerent Battle Between Brethren                 |
| C  =  Contest of Athens against Thebes                    |
| D  =  Debacle of Thebes against Phocis                    |
|                                                           |
| A is a major term                                         |
| B is a middle term                                        |
| C is a minor term                                         |
| D is a minor term, similar to C                           |
|                                                           |
o-----------------------------------------------------------o
Figure 3.  Aristotle's "War Against Neighbors" Example

In this analysis of reasoning by Analogy, it is a complex or a mixed form of inference that can be seen as taking place in two steps:

  • The first step is an Induction that abstracts a Rule from a Case and a Fact.
Case: D ⇒ B, Thebes vs Phocis is a battle between neighbors.
Fact: D ⇒ A, Thebes vs Phocis is adverse to all.
Rule: B ⇒ A, A battle between neighbors is adverse to all.
  • The final step is a Deduction that applies this Rule to a Case to arrive at a Fact.
Case: C ⇒ B, Athens vs Thebes is a battle between neighbors.
Rule: B ⇒ A, A battle between neighbors is adverse to all.
Fact: C ⇒ A, Athens vs Thebes is adverse to all.

As we see, Aristotle analyzed analogical reasoning into a phase of inductive reasoning followed by a phase of deductive reasoning. Peirce would pick up the story at this juncture and eventually parse analogy in a couple of different ways, both of them involving all three types of inference: abductive, deductive, and inductive.

Example of inquiry

[edit | edit source]

Examples of inquiry, that illustrate the full cycle of its abductive, deductive, and inductive phases, and yet are both concrete and simple enough to be suitable for a first (or zeroth) exposition, are somewhat rare in Peirce's writings, and so let us draw one from the work of fellow pragmatician John Dewey, analyzing it according to the model of zeroth-order inquiry that we developed above.

A man is walking on a warm day. The sky was clear the last time he observed it; but presently he notes, while occupied primarily with other things, that the air is cooler. It occurs to him that it is probably going to rain; looking up, he sees a dark cloud between him and the sun, and he then quickens his steps. What, if anything, in such a situation can be called thought? Neither the act of walking nor the noting of the cold is a thought. Walking is one direction of activity; looking and noting are other modes of activity. The likelihood that it will rain is, however, something suggested. The pedestrian feels the cold; he thinks of clouds and a coming shower. (John Dewey, How We Think, pp. 6–7).

Once over quickly

[edit | edit source]

Let's first give Dewey's elegant example of inquiry in everyday life the quick once over, hitting just the high points of its analysis into Peirce's three kinds of reasoning.

Abductive phase

[edit | edit source]

In Dewey's 'Rainy Day' or 'Sign of Rain' story, we find our peripatetic hero presented with a surprising Fact:

  • Fact: C ⇒ A, In the Current situation the Air is cool.

Responding to an intellectual reflex of puzzlement about the situation, his resource of common knowledge about the world is impelled to seize on an approximate Rule:

  • Rule: B ⇒ A, Just Before it rains, the Air is cool.

This Rule can be recognized as having a potential relevance to the situation because it matches the surprising Fact, C ⇒ A, in its consequential feature A.

All of this suggests that the present Case may be one in which it is just about to rain:

  • Case: C ⇒ B, The Current situation is just Before it rains.

The whole mental performance, however automatic and semi-conscious it may be, that leads up from a problematic Fact and a previously settled knowledge base of Rules to the plausible suggestion of a Case description, is what we are calling an abductive inference.

Deductive phase

[edit | edit source]

The next phase of inquiry uses deductive inference to expand the implied consequences of the abductive hypothesis, with the aim of testing its truth. For this purpose, the inquirer needs to think of other things that would follow from the consequence of his precipitate explanation. Thus, he now reflects on the Case just assumed:

  • Case: C ⇒ B, The Current situation is just Before it rains.

He looks up to scan the sky, perhaps in a random search for further information, but since the sky is a logical place to look for details of an imminent rainstorm, symbolized in our story by the letter B, we may safely suppose that our reasoner has already detached the consequence of the abduced Case, C ⇒ B, and has begun to expand on its further implications. So let us imagine that our up-looker has a more deliberate purpose in mind, and that his search for additional data is driven by the new-found, determinate Rule:

  • Rule: B ⇒ D, Just Before it rains, Dark clouds appear.

Contemplating the assumed Case in combination with this new Rule leads him by an immediate deduction to predict an additional Fact:

  • Fact: C ⇒ D, In the Current situation Dark clouds appear.

The reconstructed picture of reasoning assembled in this second phase of inquiry is true to the pattern of deductive inference.

Inductive phase

[edit | edit source]

Whatever the case, our subject observes a Dark cloud, just as he would expect on the basis of the new hypothesis. The explanation of imminent rain removes the discrepancy between observations and expectations and thereby reduces the shock of surprise that made this process of inquiry necessary.

Looking more closely

[edit | edit source]

Seeding hypotheses

[edit | edit source]

Figure 4 gives a graphical illustration of Dewey's example of inquiry, isolating for the purposes of the present analysis the first two steps in the more extended proceedings that go to make up the whole inquiry.

o-----------------------------------------------------------o
|                                                           |
|     A                                               D     |
|      o                                             o      |
|       \ *                                       * /       |
|        \  *                                   *  /        |
|         \   *                               *   /         |
|          \    *                           *    /          |
|           \     *                       *     /           |
|            \   R u l e             R u l e   /            |
|             \       *               *       /             |
|              \        *           *        /              |
|               \         *       *         /               |
|                \          * B *          /                |
|              F a c t        o        F a c t              |
|                  \          *          /                  |
|                   \         *         /                   |
|                    \        *        /                    |
|                     \       *       /                     |
|                      \   C a s e   /                      |
|                       \     *     /                       |
|                        \    *    /                        |
|                         \   *   /                         |
|                          \  *  /                          |
|                           \ * /                           |
|                            \*/                            |
|                             o                             |
|                             C                             |
|                                                           |
| A  =  the Air is cool                                     |
| B  =  just Before it rains                                |
| C  =  the Current situation                               |
| D  =  a Dark cloud appears                                |
|                                                           |
| A is a major term                                         |
| B is a middle term                                        |
| C is a minor term                                         |
| D is a major term, associated with A                      |
|                                                           |
o-----------------------------------------------------------o
Figure 4.  Dewey's "Rainy Day" Inquiry

In this analysis of the first steps of Inquiry, we have a complex or a mixed form of inference that can be seen as taking place in two steps:

  • The first step is an Abduction that abstracts a Case from the consideration of a Fact and a Rule.
Fact: C ⇒ A, In the Current situation the Air is cool.
Rule: B ⇒ A, Just Before it rains, the Air is cool.
Case: C ⇒ B, The Current situation is just Before it rains.
  • The final step is a Deduction that admits this Case to another Rule and so arrives at a novel Fact.
Case: C ⇒ B, The Current situation is just Before it rains.
Rule: B ⇒ D, Just Before it rains, a Dark cloud will appear.
Fact: C ⇒ D, In the Current situation, a Dark cloud will appear.

This is nowhere near a complete analysis of the Rainy Day inquiry, even insofar as it might be carried out within the constraints of the syllogistic framework, and it covers only the first two steps of the relevant inquiry process, but maybe it will do for a start.

One other thing needs to be noticed here, the formal duality between this expansion phase of inquiry and the argument from analogy. This can be seen most clearly in the propositional lattice diagrams shown in Figures 3 and 4, where analogy exhibits a rough "A" shape and the first two steps of inquiry exhibit a rough "V" shape, respectively. Since we find ourselves repeatedly referring to this expansion phase of inquiry as a unit, let's give it a name that suggests its duality with analogy — 'catalogy' will do for the moment. This usage is apt enough if one thinks of a catalogue entry for an item as a text that lists its salient features. Notice that analogy has to do with the examples of a given quality, while catalogy has to do with the qualities of a given example. Peirce noted similar forms of duality in many of his early writings, leading to the consummate treatment in his 1867 paper "On a New List of Categories" (CP 1.545-559, CE 2, 49-59).

Weeding hypotheses

[edit | edit source]

In order to comprehend the bearing of inductive reasoning on the closing phases of inquiry there are a couple of observations that we need to make:

  • First, we need to recognize that smaller inquiries are typically woven into larger inquiries, whether we view the whole pattern of inquiry as carried on by a single agent or by a complex community.
  • Further, we need to consider the different ways in which the particular instances of inquiry can be related to ongoing inquiries at larger scales. Three modes of inductive interaction between the micro-inquiries and the macro-inquiries that are salient here can be described under the headings of the 'Learning', the 'Transfer', and the 'Testing' of rules.

Analogy of experience

[edit | edit source]

Throughout inquiry the reasoner makes use of rules that have to be transported across intervals of experience, from the masses of experience where they are learned to the moments of experience where they are applied. Inductive reasoning is involved in the learning and the transfer of these rules, both in accumulating a knowledge base and in carrying it through the times between acquisition and application.

  • Learning. The principal way that induction contributes to an ongoing inquiry is through the learning of rules, that is, by creating each of the rules that goes into the knowledge base, or ever gets used along the way.
  • Transfer. The continuing way that induction contributes to an ongoing inquiry is through the exploit of analogy, a two-step combination of induction and deduction that serves to transfer rules from one context to another.
  • Testing. Finally, every inquiry that makes use of a knowledge base constitutes a 'field test' of its accumulated contents. If the knowledge base fails to serve any live inquiry in a satisfactory manner, then there is a prima facie reason to reconsider and possibly to amend some of its rules.

Let's now consider how these principles of learning, transfer, and testing apply to John Dewey's 'Sign of Rain' example.

Learning
[edit | edit source]

Rules in a knowledge base, as far as their effective content goes, can be obtained by any mode of inference.

For example, a rule like:

  • Rule: B ⇒ A, Just Before it rains, the Air is cool,

is usually induced from a consideration of many past events, in a manner that can be rationally reconstructed as follows:

  • Case: C ⇒ B, In Certain events, it is just Before it rains,
  • Fact: C ⇒ A, In Certain events, the Air is cool,
------------------------------------------------------------------------------------------
  • Rule: B ⇒ A, Just Before it rains, the Air is cool.

However, the very same proposition could also be abduced as an explanation of a singular occurrence or deduced as a conclusion of a presumptive theory.

Transfer
[edit | edit source]

What is it that gives a distinctively inductive character to the acquisition of a knowledge base? It is evidently the 'analogy of experience' that underlies its useful application. Whenever we find ourselves prefacing an argument with the phrase 'If past experience is any guide …' then we can be sure that this principle has come into play. We are invoking an analogy between past experience, considered as a totality, and present experience, considered as a point of application. What we mean in practice is this: 'If past experience is a fair sample of possible experience, then the knowledge gained in it applies to present experience'. This is the mechanism that allows a knowledge base to be carried across gulfs of experience that are indifferent to the effective contents of its rules.

Here are the details of how this notion of transfer works out in the case of the 'Sign of Rain' example:

Let K(pres) be a portion of the reasoner's knowledge base that is logically equivalent to the conjunction of two rules, as follows:

  • K(pres) = (B ⇒ A) and (B ⇒ D).

K(pres) is the present knowledge base, expressed in the form of a logical constraint on the present universe of discourse.

It is convenient to have the option of expressing all logical statements in terms of their logical models, that is, in terms of the primitive circumstances or the elements of experience over which they hold true.

  • Let E(past) be the chosen set of experiences, or the circumstances that we have in mind when we refer to 'past experience'.
  • Let E(poss) be the collective set of experiences, or the projective total of possible circumstances.
  • Let E(pres) be the present experience, or the circumstances that are present to the reasoner at the current moment.

If we think of the knowledge base K(pres) as referring to the 'regime of experience' over which it is valid, then all of these sets of models can be compared by the simple relations of set inclusion or logical implication.

Figure 5 schematizes this way of viewing the 'analogy of experience'.

o-----------------------------------------------------------o
|                                                           |
|                          K(pres)                          |
|                             o                             |
|                            /|\                            |
|                           / | \                           |
|                          /  |  \                          |
|                         /   |   \                         |
|                        /  Rule   \                        |
|                       /     |     \                       |
|                      /      |      \                      |
|                     /       |       \                     |
|                    /     E(poss)     \                    |
|              Fact /         o         \ Fact              |
|                  /        *   *        \                  |
|                 /       *       *       \                 |
|                /      *           *      \                |
|               /     *               *     \               |
|              /    *                   *    \              |
|             /   *  Case           Case  *   \             |
|            /  *                           *  \            |
|           / *                               * \           |
|          /*                                   *\          |
|         o<<<---------------<<<---------------<<<o         |
|      E(past)        Analogy Morphism         E(pres)      |
|    More Known                              Less Known     |
|                                                           |
o-----------------------------------------------------------o
Figure 5.  Analogy of Experience

In these terms, the analogy of experience proceeds by inducing a Rule about the validity of a current knowledge base and then deducing a Fact, its applicability to a current experience, as in the following sequence:

Inductive Phase:

  • Given Case: E(past) ⇒ E(poss), Chosen events fairly sample Collective events.
  • Given Fact: E(past) ⇒ K(pres), Chosen events support the Knowledge regime.
-----------------------------------------------------------------------------------------------------------------------------
  • Induce Rule: E(poss) ⇒ K(pres), Collective events support the Knowledge regime.

Deductive Phase:

  • Given Case: E(pres) ⇒ E(poss), Current events fairly sample Collective events.
  • Given Rule: E(poss) ⇒ K(pres), Collective events support the Knowledge regime.
--------------------------------------------------------------------------------------------------------------------------------
  • Deduce Fact: E(pres) ⇒ K(pres), Current events support the Knowledge regime.
Testing
[edit | edit source]

If the observer looks up and does not see dark clouds, or if he runs for shelter but it does not rain, then there is fresh occasion to question the utility or the validity of his knowledge base. But we must leave our foulweather friend for now and defer the logical analysis of this testing phase to another occasion.

References

[edit | edit source]
  • Angluin, Dana (1989), "Learning with Hints", pp. 167–181 in David Haussler and Leonard Pitt (eds.), Proceedings of the 1988 Workshop on Computational Learning Theory, MIT, 3–5 August 1988, Morgan Kaufmann, San Mateo, CA, 1989.
  • Aristotle, "Prior Analytics", Hugh Tredennick (trans.), pp. 181–531 in Aristotle, Volume 1, Loeb Classical Library, William Heinemann, London, UK, 1938.
  • Awbrey, S.M., and Awbrey, J.L. (May 2001), "Conceptual Barriers to Creating Integrative Universities", Organization : The Interdisciplinary Journal of Organization, Theory, and Society 8(2), Sage Publications, London, UK, pp. 269–284. Abstract.
  • Awbrey, S.M., and Awbrey, J.L. (September 18, 1999), "Organizations of Learning or Learning Organizations : The Challenge of Creating Integrative Universities for the Next Century", Second International Conference of the Journal Organization , Re-Organizing Knowledge, Trans-Forming Institutions : Knowing, Knowledge, and the University in the 21st Century, University of Massachusetts, Amherst, MA. Online.
  • Awbrey, J.L., and Awbrey, S.M. (Autumn 1995), "Interpretation as Action : The Risk of Inquiry", Inquiry : Critical Thinking Across the Disciplines 15(1), pp. 40–52. Online.
  • Awbrey, J.L., and Awbrey, S.M. (June 1992), "Interpretation as Action : The Risk of Inquiry", The Eleventh International Human Science Research Conference, Oakland University, Rochester, Michigan.
  • Awbrey, S.M., and Awbrey, J.L. (May 1991), "An Architecture for Inquiry : Building Computer Platforms for Discovery", Proceedings of the Eighth International Conference on Technology and Education, Toronto, Canada, pp. 874–875. Online.
  • Awbrey, J.L., and Awbrey, S.M. (January 1991), "Exploring Research Data Interactively : Developing a Computer Architecture for Inquiry", Poster presented at the Annual Sigma Xi Research Forum, University of Texas Medical Branch, Galveston, TX.
  • Awbrey, J.L., and Awbrey, S.M. (August 1990), "Exploring Research Data Interactively. Theme One : A Program of Inquiry", Proceedings of the Sixth Annual Conference on Applications of Artificial Intelligence and CD-ROM in Education and Training, Society for Applied Learning Technology, Washington, DC, pp. 9–15.
  • Delaney, C.F. (1993), Science, Knowledge, and Mind: A Study in the Philosophy of C.S. Peirce, University of Notre Dame Press, Notre Dame, IN.
  • Dewey, John (1910), How We Think, D.C. Heath, Lexington, MA, 1910. Reprinted, Prometheus Books, Buffalo, NY, 1991.
  • Dewey, John (1938), Logic: The Theory of Inquiry, Henry Holt and Company, New York, NY, 1938. Reprinted as pp. 1–527 in John Dewey, The Later Works, 1925–1953, Volume 12 : 1938, Jo Ann Boydston (ed.), Kathleen Poulos (text. ed.), Ernest Nagel (intro.), Southern Illinois University Press, Carbondale and Edwardsville, IL, 1986.
  • Haack, Susan (1993), Evidence and Inquiry : Towards Reconstruction in Epistemology, Blackwell Publishers, Oxford, UK.
  • Hanson, Norwood Russell (1958), Patterns of Discovery, An Inquiry into the Conceptual Foundations of Science, Cambridge University Press, Cambridge, UK.
  • Hendricks, Vincent F. (2005), Thought 2 Talk : A Crash Course in Reflection and Expression, Automatic Press, New York, NY.
  • Misak, Cheryl J. (1991), Truth and the End of Inquiry, A Peircean Account of Truth, Oxford University Press, Oxford, UK.
  • Peirce, C.S., (1931–1935, 1958), Collected Papers of Charles Sanders Peirce, vols. 1–6, Charles Hartshorne and Paul Weiss (eds.), vols. 7–8, Arthur W. Burks (ed.), Harvard University Press, Cambridge, MA. Cited as CP volume.paragraph.
  • Stalnaker, Robert C. (1984), Inquiry, MIT Press, Cambridge, MA.

Syllabus

[edit | edit source]

Focal nodes

[edit | edit source]

Peer nodes

[edit | edit source]

Logical operators

[edit | edit source]

[edit | edit source]

Relational concepts

[edit | edit source]

Information, Inquiry

[edit | edit source]

[edit | edit source]

Document history

[edit | edit source]

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

老打嗝是什么病的前兆 什么面什么刀 交际花是什么意思 教育局局长是什么级别 什么是匝道图片
什么是汗疱疹 吃什么补雌激素最快 1978年是什么年 不小心怀孕了吃什么药可以流掉 鲨鱼吃什么
什么是嗜睡 咳嗽能吃什么水果 6.30是什么星座 医院医务科是干什么的 身份证有什么用
什么是冰种翡翠 睡觉打鼾是什么原因 维生素d3什么牌子好 经常吃海带有什么好处和坏处 单亲家庭是指什么
桎梏什么意思hcv8jop2ns7r.cn 溃疡吃什么水果hcv8jop4ns3r.cn 木人石心是什么意思hcv8jop6ns8r.cn 在什么什么后面hcv8jop3ns4r.cn 六月二十三号是什么星座cl108k.com
金黄色葡萄球菌是什么菌hcv9jop3ns9r.cn 梅花三弄是什么意思hcv9jop1ns9r.cn 每天头疼是什么原因引起的hcv9jop1ns7r.cn 晚上难以入睡是什么原因hcv8jop9ns7r.cn 金牛座女和什么座最配对hcv8jop3ns0r.cn
牙神经疼吃什么药hcv9jop0ns3r.cn 长红疹是什么原因hcv9jop1ns7r.cn 什么叫伴手礼hcv7jop9ns8r.cn 支那是什么意思1949doufunao.com 清明是什么季节hanqikai.com
失眠吃什么hcv8jop4ns2r.cn 宝宝手心热是什么原因hcv9jop8ns1r.cn 手抖是什么原因hcv9jop4ns3r.cn 闷葫芦是什么意思hcv8jop9ns4r.cn 子宫肌腺症是什么病hcv7jop9ns6r.cn
百度